| | APACHE S

Jetspeed-2 RDBMS Components
v.2.1.3

Project Documentation

Apache Software Foundation 22 December 2007

TABLE OF CONTENTS i

Table of Contents

Jetspeed-2 RDBMS Documentation
RDBMS OVEIVIEW oottt e e e e e e e e e e e 1

Data AcCcess in Jetspeed-2 4

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

1.1 RDBMS OVERVIEW 1

11 RDBMS Overview

RDBMS Overview

Jetspeed-2 RDBMS component provide a layer of abstraction from the persistence mechanism used by
Jetspeed-2. It provides facilities for datasource configuration as well as data access.

Datasource Configuration

Jetspeed-2 uses O] B Per si st enceBr oker API as its default persistence mechanism. The

Connect i onReposi t or yEnt ry component configures OJB for Jetspeed-2 as well as the properties
available under / et ¢/ db- 0j b in the Jetspeed-2 source repository or WEB- | NF/ ¢l asses in a deployed
instance of Jetspeed-2.

The dat asour ce. xm spring assembly configuration file configures Connect i onReposi toryEntry
and is located in VEB- | NF/ assenbl y/ boot .

The Connect i onReposi t or yEnt ry configures an entry in OJB's ConnectionRepository according to
its properties. The properties dri ver Cl assNarme, ur | , user nane and passwor d ate used only if no
j ndi Name is set, i.e. if the connection factory uses the driver to create data sources. The platform
settings are derived from the configured data source or database driver using OJB's

JdbcMet adat alt i | s class. The default Jetspeed-2 Connect i onReposi t or yEnt ry configuration
expose a datasource.

<bean i d="Jet speedDS"
cl ass="org. apache. j et speed. conponent s. rdbms. oj b. Connect i onReposi toryEntry">
<property name="j ndi Nane" >
<val ue>j ava: conp/ env/ j dbc/j et speed</ val ue>
</ property>
</ bean>

In order for OJB to be configured properly with Jetspeed-2, the QJB. properti es file (located under
/ et c/ db- oj b/ QIB. properti es in the source tree and VEB- | NF/ ¢l asses in the deployed
application) must set:

Connect i onManager Cl ass=or g. apache. j et speed. conponent s. r dbns. oj b. Connect i onManager | npl

instead of:

Connect i onFact oryC ass=or g. apache. oj b. br oker. accessl ayer. Connect i onFact or yManaged! npl

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://db.apache.org/ojb/

1.1 RDBMS OVERVIEW

A class diagram of Connect i onReposi t or yEnt ry and Connect i onManager | npl is provided
below:

® ConnectionRepositoryEntry ® ConnectionManagerimpl
@ =etBeanName() C.F CoennectionManagerimpl(}

@ getlcdaliaz) @ getConnectionDescriptor()

O zetlcdaliaz) @ getSupportedPlatformi)

@ getindiMame() @ getConnection()

@ =etindiMame) @ localBegin()

@ getDriverClazsMame() @ localCommit(}

@ setDriverClazsMame() @ localRollback!)

@ getPassword() O igAlivel)

@ =etPassword() @ iglnLocalTran=zaction()

@ getUrll} @ releazeConnection()

@ =etUrll) @ getUnderyingConnectionFactory()
@ getU=zernamel) @ =zetBatchMode)

@ =etUzernamel) @ izBatchModel)

@ getPlatformi} @ executeBatchi)

@ =etPlatformi) @ executeBatchlfNecessary()

@ izletspesdEngineScoped() @ clearBatch{(}

@ setletzpeedEngineScoped()

@ afterPropertie=Set()

0JB Datasource Configuration

The bean name provided in dat asour ce. xm must match the j dbc- connecti on-descri ptor
j cd-al i as property (by default Jet speedDS) located in OJB r eposi t ory_dat abase. xm as
illustrated below.

<j dbc- connecti on-descri ptor
jcd-alias="Jet speedDS"
def aul t - connecti on="true"
bat ch- rode="f al se" >

Jetspeed-2 Datasource Configuration in Tomcat

Jetspeed-2 configure the following datasource in Tomcat. In the source tree, the Tomcat datasource
configuration is located under / et ¢/ conf / t ontat . When deployed Jetspeed-2 in a Tomcat instance,

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.1 RDBMS OVERVIEW

the Jetspeed-2 datasource configuration are deployed under
${tonctat _hone}/conf/Catalina/l ocal host/]etspeed. xm . If a different portal name is
being used for Jetspeed-2, the configuration file will be named accordingly.

<Resour ce nanme="j dbc/j et speed" aut h="Cont ai ner"
factory="org. apache. commons. dbcp. Basi cDat aSour ceFact ory"
type="j avax. sql . Dat aSour ce" usernane="" password=""
driver Cl assNanme="or g. apache. der by. j dbc. EnbeddedDri ver"
url ="j dbc: derby: /tnp/ producti ondb; creat e=true"
maxAct i ve="100" maxl| dl e="30" maxWai t="10000"/>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2

1.2 DATA ACCESS IN JETSPEED-2 4

Data Access in Jetspeed-2

Data Access Overview

Jetspeed-2 RDBMS component provide some of level of abstraction from the underlying persistence
mechanism.

Data Access Using Object Relational Mapping

Jetspeed-2 uses object relational mapping as the underlying technology for persistence. By default,
Apache OJB is used as an ORM engine. In order to minimize Jetspeed-2 OJB dependencies, the

I ni t abl ePer si st enceBr oker DaoSupport provides a layer of abstraction that minimizes the
dependencies on a specific ORM engine. The class diagram below illustration the Jetspeed-2
implementation classes that leverage | ni t abl ePer si st enceBr oker DaoSupport:

1 1
[@ org.apache.jetspeed. security.spi impl. Securityhecessimal | [@ org.apache jetspeed capabilities.impl. JetspeedCapabilities |

@ InitablePersistenceBrokerDac Support

of SRS RSN
o bt 1
!.i | org.spache jetspeed profiter.impl JetspeedProfilerimpl |

|
| @ org.apache.jetspeed. page.impl. DatabasePageManager]

I 1] ofg.apache jelspesd. prefa.impl PersistenceBrokerPraferencesProvider I

| @ org.apache jetspeed 550 impl PersistenceBroker S 50Provider I

| @ oeg.apache jHapesd compantnts. portietregistry PersistenceBrokerPortetRegistry |

The | ni t abl ePer si st enceBr oker DaoSupport extends
org. springframewor k. orm oj b. support. Persi st enceBr oker DaoSupport.

Spring ORM Support

Spring's adds significant support when using the O/R mapping layer of your choice to create data access
applications. The | ni t abl ePer si st enceBr oker DaoSuppor t extends spring layer of abstraction for
persistence support, specifically the OJB Per si st enceBr oker API support .

Using such a layer of abstraction has many advantages. Some of the advantages outlined in Spring's
documentation are:
» Ease of testing. Spring's inversion of control approach makes it easy to swap the implementations
and config locations of persistence manager instances, JDBC DataSources, transaction managers, and
mapper object implementations (if needed). This makes it much easier to isolate and test each piece

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://db.apache.org/ojb/
http://static.springframework.org/spring/docs/1.2.x/reference/orm.html#orm-ojb

1.2 DATA ACCESS IN JETSPEED-2 5

of persistence-related code in isolation.

* Common data access exceptions. Spring can wrap exceptions from you O/R mapping tool of choice,
converting them from proprietary (potentially checked) exceptions to a common runtime
DataAccessException hierarchy. This allows you to handle most persistence exceptions, which are
non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and
exception declarations. You can still trap and handle exceptions anywhere you need to. Remember
that JDBC exceptions (including DB specific dialects) are also converted to the same hierarchy,
meaning that you can perform some operations with JDBC within a consistent programming model.

* General resource management. Spring application contexts can handle the location and configuration
of persistence managers instances, JDBC DataSources, and other related resources. This makes these
values easy to manage and change. Spring offers efficient, easy and safe handling of persistence
resources.

* Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a
declarative, AOP style method interceptor, or an explicit 'template’ wrapper class at the Java code
level. In either case, transaction semantics are handled for you, and proper transaction handling
(rollback, etc) in case of exceptions is taken care of. As discussed below, you also get the benefit of
being able to use and swap various transaction managers, without your ORM specific code being
affected: for example, between local transactions and JTA, with the same full services (such as
declarative transactions) available in both scenatios. As an additional benefit, JDBC-related code can
fully integrate transactionally with the code you use to do O/R mapping. This is useful for data access
that's not suitable for O/R mapping, such as batch processing or streaming of BLOBs, which still
needs to share common transactions with O/R mapping operations.

* To avoid vendor lock-in, and allow mix-and-match implementation strategies.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

